在非线性项满足渐近线性增长条件下,研究了二阶半正离散边值问题-Δ2u(t-1)=λf(t,u(t)), t∈[1,T]Z,αu(0)-βΔu(0)=0,γu(T)+δΔu(T)=0{正解的存在性,其中λ>0为参数, f:[1,T] Z × R+→R连续,主要结果的证明基于分歧理论及拓扑度理论。
It is studied that the existence of positive solutions of second-order semipositone discrete boundary value problem with the nonlinearity satisfies asymptotically linear conditions,-Δ2u(t-1) =λf(t,u(t)), t∈[1,T]Z,αu(0) -βΔu(0) =0,γu(T) +δΔu(T) =0,{where λ is a positive parameter, f:[1,T] Z × R+→R is continuous, The proofs of the main results are based on the to-pological degree techniques and bifurcation theory.