运用单调迭代方法讨论二阶非线性常微分方程四点边值问题u″(t)+f(t,u(t))=0,t∈(0,1),u(0)=βu(ξ),u(1)=αu(η)正解的存在唯一性,其中ξ,η∈(0,1),0≤β(1-ξ)〈1,0≤αη〈1.推广和改进相关文献的结果.
By using the monotone iterative method,the existence and uniqueness of positive solutions of a nonlinear second-order four-point boundary-value problem u″(t)+f(t,u(t))=0,t∈(0,1),u(0)=βu(ξ),u(1)=αu(η) were discussed,in the equation ξ,η∈(0,1),0≤β(1-ξ)1,0≤αη1.As a result of this paper,the results of relevant literatures were generalized and improved.