讨论了一类带非齐次边界条件的p-Laplacian方程 {φp(u′(t)))′+f(t,u)=0,t∈[0,1];u′(0)-∫1 0 u′(s)dA(s)=-λ,u(1)-∫1 0 u(s)dB(s)=μ 唯一解的存在性.其中:A(s),B(s)为有界变差函数;φp(s)=|s|p-2,p〉1;λ,μ∈[0,∞)为参数.得到了正解存在唯一的充分条件.
In this paper, we study the existence and uniqueness ofsolutions of p-Laplacian equations with nonhomogeneous boundary conditions {φp(u′(t)))′+f(t,u)=0,t∈[0,1];u′(0)-∫1 0 u′(s)dA(s)=-λ,u(1)-∫1 0 u(s)dB(s)=μ Where A(s),B(s) are bounded variation functions,φp(s)=|s|p-2,p〉1;λ,μ∈[0,∞) are parameters. We obtain the sufficient conditions for the existence and uniqueness of a positive solution.