位置:成果数据库 > 期刊 > 期刊详情页
基于多尺度局部特征的图像分割模型
  • ISSN号:1000-9787
  • 期刊名称:《传感器与微系统》
  • 时间:0
  • 分类:TP391[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]西南交通大学机械工程学院,四川成都610031, [2]衢州学院机械工程学院,浙江衢州324000
  • 相关基金:国家自然科学基金资助项目(51275431)
中文摘要:

为了解决图像分割中灰度不均匀和初始轮廓敏感的问题,提出一种基于多尺度局部特征的图像分割模型。与传统局部邻域定义在方形区域不同,该模型采用圆形区域来获取更多的局部信息;考虑到局部区域灰度的变化程度不一,提出利用多尺度结构与均值滤波器相结合的方法获得多尺度局部灰度信息;通过转换灰度不均匀模型得到一个逼近真实信息的图像,并将其融合进局部高斯分布拟合(LGDF)模型,构造出基于多尺度局部特征的能量泛函。从理论分析和实验结果表明:由于多尺度结构弱化了灰度不均匀的影响,该模型既能快速、准确地分割灰度不均匀图像,又表现出对初始轮廓具有较强的鲁棒性。

英文摘要:

In order to address the issue of gray scale inhomogeneity and initial contour sensitivity, an image segmentation model based on multi-scale local feature is proposed. Different from traditional local neighborhood defined in square shape region, the circular shape is used to capture more local information in the model. Taking into account intensity varies in different levels in local region, the method combines multi-scale structure with mean value filter is proposed to acquire multi-scale local grayscale information. An approximation of true image, which is obtained by transforming grayscale inhomogeneity model, is incorporated into the local Gaussian distribution fitting ( LGDF ) model and the energy function is constructed with multi-scale local feature. The theoretical analysis and experimental results demonstrate that the proposed method can rapidly and accurately segment grayscale inhomogeneity image, and also has strong robustness to the initial contour since multi-scale structure weakens the influence of intensity inhomogeneity.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《传感器与微系统》
  • 北大核心期刊(2011版)
  • 主管单位:中国电子科技集团公司
  • 主办单位:中国电子科技集团公司第四十九研究所
  • 主编:吴亚林
  • 地址:哈尔滨市南岗区一曼街29号四十九所
  • 邮编:150001
  • 邮箱:st_chinasensor@126.com
  • 电话:0451-82510965
  • 国际标准刊号:ISSN:1000-9787
  • 国内统一刊号:ISSN:23-1537/TN
  • 邮发代号:14-203
  • 获奖情况:
  • 获全国优秀科技期刊三等奖,获1996年度黑龙江省科技期刊评比,优秀科技期刊壹等奖,获《CAJ-CD》执行优秀奖,获信息产业部2001-2002年度电子科技期刊规范化奖,获信息产业部2003-2004年度优秀电子科技期刊奖,获信息产业部2005-2006年度优秀电子科技期刊奖,获工业和信息化部2007-2008年度电子精品科技期刊奖
  • 国内外数据库收录:
  • 中国中国科技核心期刊,中国北大核心期刊(2008版),中国北大核心期刊(2011版)
  • 被引量:10819