位置:成果数据库 > 期刊 > 期刊详情页
基于概率密度分布的增量支持向量机算法
  • ISSN号:0469-5097
  • 期刊名称:《南京大学学报:自然科学版》
  • 时间:0
  • 分类:TP18[自动化与计算机技术—控制科学与工程;自动化与计算机技术—控制理论与控制工程]
  • 作者机构:[1]山西大学计算机与信息技术学院,太原030006, [2]山西大学计算智能与中文信息处理教育部重点实验室,太原030006
  • 相关基金:基金项目:国家自然科学基金(60975035,61273291),山西省回国留学人员科研资助项目(2012-008)
中文摘要:

增量支持向量机(Incremental Support Vector Machine,ISVM)模型通过每次加入一个或者一批样本进行学习,将大规模问题分解成一系列子问题,以提高支持向量机(Support Vector Machine,SVM)处理大规模数据的学习效率,但传统ISVM(Traditional ISVM,TISVM)模型中增量样本的选择方法不当可能降低其效率和泛化能力.针对ISVM中增量样本的选择问题,提出了一种基于概率密度分布的ISVM算法,称为PISVM,该方法通过概率密度分布选择含有较多重要分类信息(有可能成为支持向量)的增量样本进行训练,使得分类器能够以最快的速度收敛到最优.在标准数据集UCI上的实验结果表明PISVM模型可以在保持其泛化能力的同时进一步提高学习效率.

英文摘要:

Incremental support vector machine model(ISVM)joins a sample or a batch of samples to learn in each cycle,and then the problem can be reduced from large-scale to a series of sub issues. Therefore, ISVM can improve the efficiency of support vector machine(SVM)to deal with large scale data. However, by using traditional support vector machine(TISVM),the convergence speed, efficiency and the eventual generalization ability may be decreased due to the incorrect selection of the incremental samples. To solve the problem, an ISVM approach (incremental support vector machine based on the probability density distribution, namely PISVM)is proposed through choosing those incremental training samples including much important classification information based on probability density distribution. Using the approach can make the classifier get to the optimal hyper lane at the fastest speed. In order to verify the validity of the proposed approach, some experiments are done using the three approaches: the PISVM approach,the TISVM method and the minimum distance classifier approach. The experiment results on UCI data set demonstrate that the proposed PISVM can obtain high learning efficiency with good generalization performance simultaneously.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《南京大学学报:自然科学版》
  • 中国科技核心期刊
  • 主管单位:中华人民共和国教育部
  • 主办单位:南京大学
  • 主编:龚昌德
  • 地址:南京汉口路22号南京大学(自然科学版)编辑部
  • 邮编:210093
  • 邮箱:xbnse@netra.nju.edu.cn
  • 电话:025-83592704
  • 国际标准刊号:ISSN:0469-5097
  • 国内统一刊号:ISSN:32-1169/N
  • 邮发代号:28-25
  • 获奖情况:
  • 中国自然科学核心期刊,中国期刊方阵“双效”期刊
  • 国内外数据库收录:
  • 美国化学文摘(网络版),美国数学评论(网络版),德国数学文摘,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:9316