位置:成果数据库 > 期刊 > 期刊详情页
基于选择性集成旋转森林的人体行为识别算法
  • ISSN号:1003-6059
  • 期刊名称:《模式识别与人工智能》
  • 时间:0
  • 分类:TP391.4[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]合肥学院计算机科学与技术系,合肥230601, [2]山西大学计算机与信息技术学院,太原030006, [3]厦门理工学院计算机与信息工程学院,厦门361005, [4]江西省科学院能源研究所,南昌330096
  • 相关基金:国家自然科学基金项目(No.41401521,61273291)、山西省回国留学人员科研基金项目(No.2012-008)、山西省青年科技研究基金项目(No.2015021101)、智能信息处理山西省重点实验室开放课题基金项目(No.2014001)、安徽高校自然科学研究项目(No.KJ2015A206)、合肥学院人才科研基金项目(No.15RC07)、合肥学院重点建设学科项目(No.2014xk08)、合肥学院学科带头人培养对象项目(No.2014dtr08)、厦门理工学院高层次人才项目(No.YKJ14014R)资助
中文摘要:

人体行为识别中的一个关键问题是如何表示高维的人体动作和构建精确稳定的人体分类模型.文中提出有效的基于混合特征的人体行为识别算法.该算法融合基于外观结构的人体重要关节点极坐标特征和基于光流的运动特征,可更有效获取视频序列中的运动信息,提高识别即时性.同时提出基于帧的选择性集成旋转森林分类模型(SERF),有效地将选择性集成策略融入到旋转森林基分类器的选择中,从而增加基分类器之间的差异性.实验表明SERF模型具有较高的分类精度和较强的鲁棒性.

英文摘要:

The representation of high dimensional human actions and the construction of accurate and stable human classification model are key issues in human action recognition. An efficient action recognition algorithm based on mixed features is proposed. Key joints of human body polar coordinates features basedon appearance structure and motion features based on optical flow are fused into the proposed algorithm to capture motion information in video sequences and improve the recognition instantaneity. Meanwhile, the selective ensemble rotation forest model (SERF) based on frame is developed and the selection ensemble strategy is used to select the base classifier of rotation forest and increase differences among the classifiers. Experimental results show the better classification accuracy and robustness of the proposed model.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《模式识别与人工智能》
  • 中国科技核心期刊
  • 主管单位:中国科学技术协会 中国自动化学会
  • 主办单位:国家智能计算机研究开发中心 中国科学院合肥智能机械研究所
  • 主编:郑南宁
  • 地址:安徽省合肥市蜀山湖路350号中国科学院合肥智能机械研究所
  • 邮编:230031
  • 邮箱:bjb@iim.cas.cn
  • 电话:0551-5591176
  • 国际标准刊号:ISSN:1003-6059
  • 国内统一刊号:ISSN:34-1089/TP
  • 邮发代号:26-69
  • 获奖情况:
  • 国内外数据库收录:
  • 被引量:10169