鉴于标准粒子群算法(PSO)有易陷入局部最优位置和全局搜索能力差等缺点,给出了相似度的定义,并根据群体中每个粒子与全局最优粒子的相似度值的大小,动态非线性地更新每个粒子的惯性权重值。为了改善算法的全局搜索性能,将混沌算子引入粒子群算法中。新算法在4个测试函数上与标准粒子群算法进行了比较,结果表明新算法的性能更好。