为得到谱参量随风区的变化关系,从而更细致地刻画风浪频谱的成长方式。在动力学方程的控制下,基于三参量风浪频谱,利用动力-统计学相结合的方法导出了谱参量(谱宽度B、谱的零阶矩m0、谱的峰频率ω0)随风场要素(风区)的成长关系分别为:B=5.68×10^-3x^-9.482×10^-1-4.66bdo^-2ln x.m0=1.356×10^-8x^~2.367-1.097×10^-1ln x;ω0=4.082×10^1x^-7.623×10^-1+3.71×10^-2ln x。同时得到了简化形式的波陡δ、波龄β与谱宽度之间的关系为:δ=2.14×10^-2B^-1.05-4.26×10^-1ln B,β=1.26B^1.28+1.97×10^-1ln(B)。此外,还得出了受风场要素控制的,谱的零阶矩与谱的峰频率之间的新关系为:{ω0=α1m0^-0.33 a1=1.034×10^-1x^-1.872×10^-2+8.50×10^-4ln x,从而阐明了先前的各种经验关系是新关系在取不同风区值时的特例。可见,将动力学原理引入风浪频谱的研究,所建立的谱参量随风区的变化关系与先前的经验公式相比更加合理,且普适性更强。
Obtained to describe clearly the developing model of wind wave spectrum, the growth relationship between spe trum parameters and wind parameters must be established. The authors proposed a spectrum with three parameters: spectrum variance m0, peak frequency too, and spectrum width B, and conducted this study on the relationship with statistic method in wind dynamics. The growth relationship between spectrum parameters and wind parameters is derived with the following dynamic formulas: B=5.68×10^-3x^9.482×10^-1-4.661×10^-2ln x ; m0 =1.356×10^-8x^2.367-1.097×10^-1 ln x; ω0 =4.082×10^1x^-7.623×10^-1+3.71×10^-2ln x. Meanwhile, the relationships among wave steepness δ, wave age β and spectrum width B are simplified as δ= 2.14×10^-2B^-1.05-4.26×10^-1ln B and β=1.26B^1.28+1.97×10^-1ln(B). In addition, a new relationship between the spectrum variance and the peak frequency is obtained, which is controlled by wind parameter {ω0=α1m0^-0.33 a1=1.034×10^-1x^-1.872×10^-2+8.50×10^-4ln x, The new relationship can describe previous experiential formulas, as they are just some special cases of different wind values. Therefore, using dynamics theory, the new relationship between spectrum variances and fetch is introduced in present paper, which is more reasonable and more applicable than previous ones.