1引言和本文主要结果1.1发展历史精确Jackson不等式研究有50余年的历史.为了表述已知结果,我们引进一些必要的记号.令N表示正整数全体,R表示实数全体,R~d表示d维实欧氏空间.用C(T)(T=[-π,π])表示2π周期的实值连续函数空间,其中范数‖f‖c(T)=max{|f(x)|:x∈T}.记L~2(T)为2π周期的且在任意有限区间上平方可积的实值函数空间,L~2(R)为全实轴上平方可积的实值函数空间.用U代表T或R,线性赋范空间L~2(U)的范数为
Denote by L^2(Bd × R, W^B k,μ) the weighted L^2-space of functions on the cylinder B^d ×R of (d+ 1)-dimensional Euclidean space R^d+1, where Bd is the unit ball of Rd, and the weight function W^B k,μ(x)(x ∈ B^d) is related to the reflec- tion group associated with some root system. Let ωf,(f, τ)2 denote a generalized continuous modulus of r-order defined on L^2(B^d × R, W^B k,μ), and τn,λ+μ denote the first positive zero of the Gegenbauer cosine polynomial Cn^λk+μ(cosθ) for each n ∈ N. In this paper, the sharp Jackson inequality in the space L^2(B^d × R. W^B k,μ)En-1,σ(f)2≤Kn,σ(τ,τ)satisfying the following conditions Kn,σ(2τn,λk+μ)=1,r≥1;1≤Kn,σ(2τn,λk+μ,r)≤2^(1-r)/2,0〈r〈1,is given.