在B3LYP/6-311++G(d,p)水平下,首次对一系列双取代铵氧化物(R2HNO)与双取代羟胺(R2NOH)[R=CH3,NH2,OH,F,CH2CH3,CH(CH3)2,C(CH3)3]同分异构体的相互转换机制进行了理论计算研究,并与已知的H3NO和H2NOH进行了比较.结果表明,相对于双取代羟胺(R2NOH),按照H%@ 0567-7351
At the B3LYP/6-311 + + G(d,p) level, the first time computational study was performed on the interconversion mechanism between a series of double-substituted ammonium oxide (R2HNO) and double-substituted hydroxylamine (R2NOH) isomers with R=CH3, NH2, OH, F, CH2CH3, CH(CH3)2 and C(CH3)3. Comparisons were made with the mechanism of H3NO and H2NOH. It was shown that relative to the double-substitued hydroxylamine (R2NOH), the increase of/he electronegativity of R in the order of H〈 CH3〈NH2〈OH〈F could raise both the thermodynamic and kinetic stability of the double-substituted ammonium oxide (R2HNO). In addition, for the alkyl substituents R [R=CH3, CH2CH3, CH(CH3)2 and C(CH3)3], the greater steric effect would result in the higher thermodynamic stability, and also certainly increased kinetic stability, though not so noticeable. For the newly considered seven substituents [R=CH3, NH2, OH, F, CH2CH3, CH(CH3)2 and C(CH3)3], the conversion barrier from R2HNO to R2NOH is as large as 27.0-56.3 kcal/mol. This indicates that all of them might be probably characterized in gas-phase.