研究了如下Boussinesq方程Cauchy问题的整体解:utt-αΔutt-2bΔut=-cΔ^2u+Δu-αu+βΔ(u^p),u(x,0)=ε^2φ(x),ut(x,0)=ε^2ψ(x).其中x∈R^n,n≥2,t〉0,α,b,c,α是正常数,β∈R,ε〉0是小参数,p≥2是正整数.当α+c-b^2〉0时,得到了上面问题整体解的存在性,而且得到方程的Sobolev指数是n/2-1/p-1.
The authors studied the global solution of the Cauchy problem for the following Boussinesq equation: utt-αΔutt-2bΔut=-cΔ^2u+Δu-αu+βΔ(u^p),u(x,0)=ε^2φ(x),ut(x,0)=ε^2ψ(x),where x∈R^n,n≥2,t〉0,α,b,c and α are positive constants, β ∈ R,eis a small positive parameter,p≥2 is positive integer. For the case α + c - b^2 〉 0, the well-posedness of the global solution for the equation is studied. It is proved that the Sobolev exponent of the equation is n/2-1/p-1.