讨论了非线性抛物方程初边值问题 {δu/δt=△u+λ|u|^γ-1u-βu^p,(x,t)∈Ω×(0,+∞) u(x+t)|δΩ×(0,+∞)=0, u(x+0)=u0(x),x∈Ω 解的渐近性态,给出了解在有限时间熄灭的充分条件.
The extinction phenomena of solutions of initial-boundary value problem for a type of nonlinear parabolic equation {δu/δt=△u+λ|u|^γ-1u-βu^p,(x,t)∈Ω×(0,+∞) u(x+t)|δΩ×(0,+∞)=0, u(x+0)=u0(x),x∈Ω is studied. A sufficient condition about tho extinction of solutions is given.