位置:成果数据库 > 期刊 > 期刊详情页
带Spearman相关性的多标签GRF算法
  • ISSN号:1003-6059
  • 期刊名称:《模式识别与人工智能》
  • 时间:0
  • 分类:TP391.4[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]湘潭大学信息工程学院,湘潭411105
  • 相关基金:国家自然科学基金资助项目(No.60773047)
中文摘要:

通过采用Spearman相关系数矩阵取代临时分类标记来构造标签相关性模块,提出一种改进的带Spearman相关性的多标签高斯随机域(MLQ-GRF)算法,以减少临时分类标记的不确定性.实验对比所得结果表明,文中构造的改进的MLQ-GRF算法对于扰动和带误差的临时分类标记有更好的稳定性,能提高分类的精确度.

英文摘要:

An improved multi-label Gaussian random field algorithm is proposed to reduce the uncertainty of temporary labels.The spearman correlation matrix is used to build a label-relevant module instead of temporary labels.The results of comparative experiments show that the proposed algorithm is stable for temporary labels with tolerance and disturbance and it increases the accuracy of classification.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《模式识别与人工智能》
  • 中国科技核心期刊
  • 主管单位:中国科学技术协会 中国自动化学会
  • 主办单位:国家智能计算机研究开发中心 中国科学院合肥智能机械研究所
  • 主编:郑南宁
  • 地址:安徽省合肥市蜀山湖路350号中国科学院合肥智能机械研究所
  • 邮编:230031
  • 邮箱:bjb@iim.cas.cn
  • 电话:0551-5591176
  • 国际标准刊号:ISSN:1003-6059
  • 国内统一刊号:ISSN:34-1089/TP
  • 邮发代号:26-69
  • 获奖情况:
  • 国内外数据库收录:
  • 被引量:10169