位置:成果数据库 > 期刊 > 期刊详情页
基于拟蒙特卡罗方法的进化算法搜索鲁棒最优解的性能提高研究
  • ISSN号:1003-6059
  • 期刊名称:《模式识别与人工智能》
  • 时间:0
  • 分类:TP181[自动化与计算机技术—控制科学与工程;自动化与计算机技术—控制理论与控制工程]
  • 作者机构:[1]中南大学信息科学与工程学院,长沙410083, [2]湘潭大学信息工程学院,湘潭411105
  • 相关基金:国家自然科学基金项目(No.60773047)、湖南省自然科学基金项目(No.09JJ6089)、湖南省教育厅项目(No.10C126)资助 .
中文摘要:

鲁棒最优解在工程应用中具有十分重要的意义,它是进化计算的重要研究内容,也是研究难点.进化算法搜索鲁棒最优解时,通常使用蒙特卡罗积分(MCI)近似估计有效目标函数(EOF),但由于现有的原始蒙特卡罗方法(C—MC)近似精度不高,导致进化算法搜索鲁棒最优解的性能较差.文中提出用拟蒙特卡罗方法(Q-MC)估计有效目标函数.通过大量的数值实验,结果表明,与C—MC相比,文中所引入的Q—MC方法——SQRT序列、SOBOL序列和Korobov点阵能更精确估计EOF,进而较大提高进化算法搜索鲁棒最优解的性能.

英文摘要:

Robust optimal solution is of great significance in engineering application. It is one of the most important and difficult topics in evolutionary computation. Monte Carlo Integral (MCI) is generally used to approximate effective objective function (EOF) in searching robust optimal solution with evolutionary algorithm (EA). However, due to the low accuracy in existing crude Monte Carlo (C-MC) method, the performance of searching robust optimal solution with EA is unsatisfactory. Therefore, a Quasi-Monte Carlo (Q-MC) method is proposed to estimate EOF. The experimental results demonstrate that the proposed Q-MC methods -SQRT sequence, SOBOL sequence and Korobov Lattice approximate EOF more precisely compared with C-MC method, and consequently, the performance of searching robust optimal solution with EA is improved.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《模式识别与人工智能》
  • 中国科技核心期刊
  • 主管单位:中国科学技术协会 中国自动化学会
  • 主办单位:国家智能计算机研究开发中心 中国科学院合肥智能机械研究所
  • 主编:郑南宁
  • 地址:安徽省合肥市蜀山湖路350号中国科学院合肥智能机械研究所
  • 邮编:230031
  • 邮箱:bjb@iim.cas.cn
  • 电话:0551-5591176
  • 国际标准刊号:ISSN:1003-6059
  • 国内统一刊号:ISSN:34-1089/TP
  • 邮发代号:26-69
  • 获奖情况:
  • 国内外数据库收录:
  • 被引量:10169