位置:成果数据库 > 期刊 > 期刊详情页
基于Delaunay三角剖分的多目标进化算法解集分布度评价指标
  • ISSN号:1003-6059
  • 期刊名称:模式识别与人工智能
  • 时间:2012.12.12
  • 页码:885-893
  • 分类:TP181[自动化与计算机技术—控制科学与工程;自动化与计算机技术—控制理论与控制工程]
  • 作者机构:[1]湘潭大学信息工程学院,湘潭411105
  • 相关基金:国家自然科学基金项目(No.60773047,61070088)、湖南省自然科学基金项目(No.09JJ6089,10JJ3072)、湖南省教育厅项目(No.10C1261)资助
  • 相关项目:进化多目标优化算法性能评价方法的研究
中文摘要:

系统分析目前多目标进化算法(MOEAs)分布度评价指标的特点和不足,提出一种基于Delaunay三角剖分的分布度评价指标.该指标将基于邻域和基于距离的评价思想相结合,利用Delaunay三角网最近邻与邻接性的特点实现自主邻域划分.采用空间映射的方法,有效减少MOEAs解集非支配关系对种群分布度评价的影响.测试结果表明该指标能准确反映MOEAs解集的分布性.

英文摘要:

A Delaunay triangulation based metric (DTDM) is proposed for assessing the diversity metric in multi-objective evolutionary algorithms (MOEAs) by analyzing the characteristics and shortcomings of the current diversity metrics. The proposed metric is introduced by combining the neighborhood-based ideology and distance-based ideology. The metric independently searches the neighborhood by using the properties of the nearest and adjacent neighborhood of Delaunay triangulation net. The non-dominated relationship is eliminated according to a space mapping technique. The experimental results show that the proposed metric accurately evaluates the diversity of the solution set obtained by MOEAs.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《模式识别与人工智能》
  • 中国科技核心期刊
  • 主管单位:中国科学技术协会 中国自动化学会
  • 主办单位:国家智能计算机研究开发中心 中国科学院合肥智能机械研究所
  • 主编:郑南宁
  • 地址:安徽省合肥市蜀山湖路350号中国科学院合肥智能机械研究所
  • 邮编:230031
  • 邮箱:bjb@iim.cas.cn
  • 电话:0551-5591176
  • 国际标准刊号:ISSN:1003-6059
  • 国内统一刊号:ISSN:34-1089/TP
  • 邮发代号:26-69
  • 获奖情况:
  • 国内外数据库收录:
  • 被引量:10169