搜索鲁棒Pareto最优解是多目标进化算法(MOEA)研究的一个重要方面.目前,优化"原目标函数"的传统MOEA与基于"有效目标函数"的MOEA(Eff-MOEA)在搜索鲁棒Pareto最优解时都易丢失某些性质的解.为解决这一缺陷,本文定义了一种新的鲁棒Pareto最优解,提出了一种新的搜索鲁棒Pareto最优解的MOEA(MOEA/R),MOEA/R将多目标鲁棒优化问题(MROP)转化成两目标问题来优化,一个目标为解的质量,另一个目标为解的鲁棒性,每一目标均对应一子优化问题.通过与NSGA-Ⅱ及Eff-MOEA的对比分析,结果表明MOEA/R的结果较好,更重要的是本文探索了一种新的搜索鲁棒Pareto最优解的思想.
Searching for robust Pareto optimal solutions is one of the most important fields in the research of multi-objective evolutionary algorithm(MOEA).Recently,both traditional MOEA and EFF-MOEA which optimize "original objective function" and "effective objective function" respectively easily lose some kinds of solutions.In order to solve this deficiency,we defined a new robust Pareto optimal solution and proposed a novel MOEA named as MOEA/R,which converts a multi-objective robust optimization problem (MROP) into a bi-objective optimization problem. Each of the two objectives represents a sub-MOP, one opti- mizes solution' s quality and the other optimizes solution' s robustness. Through the comparison and analysis between MOEA/R, NSGA-Ⅱ and Eff-MOEA,the experimental results demonstrate that MOEA/R can acquire good purposes. The most important contribution of this paper is that MOEA/R explores a novel methodology for searching robust Pareto optimal solutions.