位置:成果数据库 > 期刊 > 期刊详情页
基于新的决策规则的球形支持向量机分类算法
  • ISSN号:1004-731X
  • 期刊名称:《系统仿真学报》
  • 时间:0
  • 分类:TP391[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]南京理工大学计算机科学与技术学院,江苏南京210094
  • 相关基金:国家自然科学基金(60672074);江苏省自然科学基金(BK2006569).
中文摘要:

球形支持向量机是一种学习算法,它通过在高维特征空间中,对每一个模式类别构造一个覆盖其所有训练样本的具有最小体积的超球体,来实现对训练样本空间的划分。在此基础上,提出了一种基于新的决策规则的球形支持向量机算法,并在七个UCI数据集上进行了实验,实验结果表明提出的算法可以取得比标准的支持向量机算法更好的分类效果。

英文摘要:

The sphere-structured support vector machines algorithm is one of the learning methods. It can partition the training samples space by means of constructing the hyperspheres. These hyperspheres have the minimum volume and cover all training samples of each pattern classe. According to this approach, a sphere-structured support vector machines classification algorithm based on the new decision rule was proposed. To investigate the effectiveness of the presented approach, it was applied to seven UCI datasets. Experimental results show the better classification performance than the standard support vector machines algorithm.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《系统仿真学报》
  • 北大核心期刊(2011版)
  • 主管单位:中国航天科工集团公司
  • 主办单位:北京仿真中心 中国仿真学会
  • 主编:李伯虎
  • 地址:北京市海淀区永定路50号院
  • 邮编:100039
  • 邮箱:simu-xb@vip.sina.com
  • 电话:010-88527147
  • 国际标准刊号:ISSN:1004-731X
  • 国内统一刊号:ISSN:11-3092/V
  • 邮发代号:82-9
  • 获奖情况:
  • 国内外数据库收录:
  • 美国化学文摘(网络版),荷兰文摘与引文数据库,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版)
  • 被引量:51729