钙网蛋白(calreticulin,CRT)和caspase-12是重要的内质网(endoplasmic reticulum,ER)应激分子,本实验在心肌细胞低氧/复氧(hypoxia/reoxygenation,H/R)模型上观察低氧预处理(hypoxic preconditioning,HPC)对CRT和caspase-12表达及活化的影响,探讨内质网应激(endoplasmic reticulum stress,ERS)在HPC保护机制中的意义及其细胞信号转导机制。原代培养的Sprague-Dawley乳鼠心肌细胞随机分为6组:H/R组、HPC+H/R组、SB203580+HPC+H/R组、SP600125+HPC+H/R组、HPC组和对照组。以细胞存活率、乳酸脱氢酶(lactate dehydrogenase,LDH)活性及流式细胞术检测细胞损伤情况:Western blot方法检测CRT和caspase-12表达、活化及p38丝裂素活化蛋白激酶(mitogen—activated protein kinases,MAPK)、cJun N-terminal kinase(JNK)磷酸化水平。结果表明:(1)HPC具有细胞保护作用,与H/R组比较,HPC+H/R组细胞凋亡率和LDH漏出分别降低6.6%和70.0%,存活率增高6.4%:HPC前以特异性p38MAPK抑制剂SB203580预孵育消除HPC的保护作用,与HPC+H/R组相比,细胞凋亡率和LDH漏出分别增高5.4%和2.1倍,存活率降低5.4%,JNK特异性抑制剂SP600125预孵育对HPC的保护作用无明显影响。(2)H/R明显上调CRT表达(较对照组高8.1倍)和caspase-12活性(较对照组高33.2倍);单独HPC可诱导CRT表达增多(较对照组高2.6倍),但上调程度较H/R组低60%。H/R前进行HPC降低CRT过表达程度(降低72.4%)及caspase-12活化水平(降低59.6%)。(3)HPC前应用p38MAPK抑制剂,抑制CRT表达上调(分别较HPC+H/R组和HPC组低63.9%和71.9%),并消除HPC减轻H/R上调caspase-12活性的作用(较HPC+H/R组高7.1倍);HPC前抑制JNK活性对CRT、caspase-12表达和活化均无明显影响。上述结果提示:HPC可激发适当的ERS,抑制H/R诱导的过度ERS,?
Calreticulin (CRT), an important Ca^2+-binding molecular chaperone in the endoplasmic reticulum (ER), and caspase- 12, a pivotal molecule mediating ER-initiated apoptosis, are involved in the ER stress (ERS). Using primary cultured neonatal cardiomyocytes, CRT and caspase-12 expression and activation during hypoxic preconditioning (HPC) and hypoxia/reoxygenation (H/R) were studied to explore the role of ERS in cardioprotection by HPC. And by using SB203580 and SP600125 [the specific inhibitors of p38 mitogenactivated protein kinase (MAPK) and c-Jun N-terminal kinase (JNK) ] separately, the role of p38 MAPK in HPC-induced ERS was also detected. Neonatal cardiomyocytes were prepared from Sprague-Dawley rats aged 24 h, and cultured in DMEM medium containing 10% fetal bovine serum, and then randomly divided into six groups as follows: H/R, HPC+H/R, SB203580+HPC+H/R,SP600125+HPC+H/R, HPC and control groups. H/R was produced by 2-hour hypoxia/14-hour reoxygenation, and HPC by 20-minute hypoxia/24-hour reoxygenation. Morphological studies, estimation of lactate dehydrogenase (LDH) leakage and flow cytometry were employed to assess cell apoptosis and necrosis. CRT and caspase-12 expression and activation, levels of phospho-p38 MAPK and phospho-JNK were detected by Western blot. All experiments were repeated at least four separate times. The results obtained are as follows: (1) HPC relieved the cell injury caused by H/R. Compared with that in H/R group, cells' survival rate in HPC+H/R group increased by 6.4%, and the apoptosis rate and LDH leakage in the cell culture medium decreased by 6.6% and 70.0%, respectively. (2) H/R induced caspase-12 activation (33.2-fold increase in comparison with control) and CRT expression (8.1-fold increase in comparison with control). HPC itself resulted in mild CRT up-regulation (2.6-fold increase in comparison with control), but the extent of up-regulation was lower than that induced by H/R. HPC before H/R was found t