本实验分别在整体和细胞水平观察缺血后处理(ischemic postconditioning,I-postC)对骨骼肌缺血/再灌注(ischemia/reperfusion,I/R)损伤的影响,并探讨钙网蛋白(calreticulin,CRT)介导的信号转导机制。(1)整体实验:健康雄性Wistar大鼠48只,无创动脉夹夹闭右侧股动脉4h,松夹再灌注12h或24h建立大鼠右后肢I/R损伤模型,随机分为I/R组、缺血预处理(ischemic preconditioning,IPC)组(5min缺血/5min再灌,3个循环)和I-postC组(1min再灌/1min缺血,3个循环)(n=16),大鼠左后肢做对照处理。再灌注结束时测定血浆乳酸脱氢酶(1actate dehydrogenase,LDH)活性、骨骼肌湿干重比值(wet/dryweightratio,W/D);电镜观察骨骼肌超微结构变化:Westernblot检测骨骼肌CRT、钙调神经磷酸酶(calcineurin,CaN)的表达。(2)细胞培养实验:原代培养Sprague-Dawley乳鼠骨骼肌细胞,随机分为6组:正常对照组、缺氧/复氧(hypoxia/reoxygenation,H/R)组、缺氧预处理(hypoxic preconditioning,HPC)组、缺氧后处理(hypoxic postconditioning,H-postC)组、CaN抑制剂环孢素A(cyclosporine,CsA)+H/R组和CsA+H-postC组。台盼蓝排斥实验、流式细胞仪检测细胞损伤情况:Westernblot检测骨骼肌细胞CRT和CaN的表达。结果显示:(1)在整体动物实验中,I-postC可显著降低血浆LDH活性和组织水肿,骨骼肌超微结构损伤减轻,无细胞核凋亡现象,与IPC组相比无显著差异。I-postC再灌注12h和24hCRT表达分别较I/R12h和24h组高4.39倍和1.02倍(P〈0.05),CaN表达分别增高1.96倍和0.63倍(尸〈0.05)。相关分析显示CRT表达与CaN表达呈正相关(r-0.865,P〈0.01)。(2)在细胞培养实验中,H-postC可减轻H/R诱导的骨骼肌细胞凋亡,增加细胞存活率,与HPC组相比无显著差异,CsA可抑制H-postC的保护作用;H-postC可?
The present study was aimed to investigate the effect of ischemic postconditioning (I-postC) on ischemia/reperfusion (I/R) injury and whether calreticulin (CRT) is involved in its intracellular signal transduction both in vivo and in cultured skeletal muscle cells. I/R injury in the right hind limb of healthy male Wistar rats was induced by clamping the right femoral artery, and the rats were randomly divided into 3 groups (n=16): I/R group (4-hour ischemia/12- or 24-hour reperfusion), ischemic preconditioning (IPC) group (3 cycles of 1-minute ischemia/1-minute reperfusion) and I-postC group (3 cycles of 5-minute reperfusion/5-minute ischemia). The left hind limb was used as control. Lactate dehydrogenase (LDH) activity in blood plasma, wet/dry weight ratio (W/D) and ultramicrostructure of skeletal muscle were detected 12 h or 24 h after reperfusion. Cultured skeletal muscle cells from neonatal Sprague-Dawley (SD) rat were dividedinto 6 groups: hypoxia/reoxygenation (H/R) group, hypoxic postconditioning (H-postC) group, hypoxic preconditioning (HPC) group, cyclosporine A (CsA) + H-postC group, CsA + H/R group and control group. H/R was produced by 2-hour hypoxia/24-hour reoxygenation. The survival rate and apoptotic rate of skeletal muscle cells in each group were measured. Western blot was used to detect the expressions of CRT and calcineurin (CAN). The results were as follows: (1) During in vivo experiment, compared with I/R, I-postC significantly decreased LDH activity and W/D, attenuated the ultramicrostructure injury of skeletal muscle and the apoptosis of nucleolus. 12 h and 24 h after reperfusion, compared with that in I/R group, the expression of CRT in I-postC group increased by 439% and 102%, respectively (P〈0.05), and the expression of CAN increased by 196% and 63%, respectively (P〈0.05). Correlation analysis indicated a positive correlation between CRT and CAN expressions (r=0.865, P〈0.01). (2) In cultu