位置:成果数据库 > 期刊 > 期刊详情页
独立分量分析在心房纤颤检测中的应用研究
  • ISSN号:1008-973X
  • 期刊名称:《浙江大学学报:工学版》
  • 时间:0
  • 分类:R318.04[医药卫生—生物医学工程;医药卫生—基础医学]
  • 作者机构:[1]浙江大学生物医学工程与仪器科学学院;生物传感器国家专业实验室,浙江杭州310027
  • 相关基金:国家自然科学基金资助项目(30470461).
中文摘要:

为了从心房纤颤患者的动态心电图记录中抽取心房活动信号并对其进行特征分析,提出了一种无损型心房纤颤自动诊断方法.证明了应用独立分量分析(ICA)必须满足的3个基本条件:源间独立性、瞬时线性混合和至多一个高斯源,并建立了盲源分离的数学模型.采用快速固定点优化算法分析仿真试验和临床数据,计算各被分离分量的峰度值,有效提取了心房纤颤信号,定性和定量地表明了该方法的准确性和鲁棒性.

英文摘要:

A non-invasive diagnosis approach for atrial fibrillation (AF) was proposed by extracting atrial activity (AA) signal from real ambulatory electrocardiogram records and analyzing the AA features. Independent component analysis (ICA) theory was used to verify that three fundamental requirements which must be satisfied in ICA are source independence, at most a Gaussian source and instant linear mixture. A mathematical model was formulated for this blind source separation problem. Then a fast and efficient fixed-point ICA algorithm was applied to analyze the simulation and clinical data, and the kurtosis values of separated independent components were also evaluated. The results qualitatively and quantitatively show that the proposed ICA method for AF signal feature extraction and analysis is appropriate and robust.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《浙江大学学报:工学版》
  • 北大核心期刊(2011版)
  • 主管单位:教育部
  • 主办单位:浙江大学
  • 主编:岑可法
  • 地址:杭州市浙大路38号
  • 邮编:310027
  • 邮箱:xbgkb@zju.edu.cn
  • 电话:0571-87952273
  • 国际标准刊号:ISSN:1008-973X
  • 国内统一刊号:ISSN:33-1245/T
  • 邮发代号:32-40
  • 获奖情况:
  • 2000年获浙江省科技期刊质量评比二等奖,中国期刊方阵“双效”期刊
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,美国化学文摘(网络版),波兰哥白尼索引,德国数学文摘,荷兰文摘与引文数据库,美国工程索引,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版)
  • 被引量:21198