位置:成果数据库 > 期刊 > 期刊详情页
基于非线性STUKF滤波器和ESN算法的耦合预测模型
  • ISSN号:1004-1699
  • 期刊名称:《传感技术学报》
  • 时间:0
  • 分类:TP391[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术] TP21[自动化与计算机技术—控制科学与工程;自动化与计算机技术—检测技术与自动化装置]
  • 作者机构:辽宁工程技术大学电气工程与控制工程学院,辽宁葫芦岛125105
  • 相关基金:国家自然科学基金项目(51274118)
中文摘要:

针对瓦斯浓度时间序列的混沌性,提出一种回声状态网络算法(ESN)和无迹卡尔曼滤波器(UKF)、强跟踪滤波器(STF)耦合的混沌时间序列预测模型。对于一维瓦斯浓度混沌时间序列,采用平均轨道周期的C-C算法在时间域确定重构空间的最佳时间延迟和嵌入维数,在相空间通过非线性回归预测模型拟合瓦斯涌出动力演化轨迹,提出带有渐消因子的非线性STUKF滤波器对ESN联合参数进行最优状态估计。试验结果表明:基于STUKF的ESN瓦斯涌出模型预测方法有效,在STUKF滤波器作用下增强了ESN算法的学习效率、提高了模型的跟踪能力,能达到精度高、鲁棒性好等优点。

英文摘要:

Considering the chaotic property of gas concentration time series, a method was put forward by a coupled algorithm which consisted of echo state network, unscented kalman filter and strong tracking filter. The optimal em- bedded dimension and delay time was determined synchronously based on algorithm of C-C and theory of the aver- age orbital period in the time domain, in the phase space the gas dynamic evolution track was matched through non- linear regression forecasting model, the fading factors was introduced to nonlinear kalman filter STUKF which was applied to realize optimal state estimation of parameters of ESN. The simulation test results show that gas emission prediction model based on algorithm of ESN and STUKF is effective, and greatly helpful for improving ESN learning efficiency and traceability, meanwhile can achieve high precision and good robustness, etc.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《传感技术学报》
  • 北大核心期刊(2011版)
  • 主管单位:国家教育部
  • 主办单位:东南大学 中国微米纳米技术学会
  • 主编:黄庆安
  • 地址:南京市四牌楼2号
  • 邮编:210096
  • 邮箱:dzcg-bjb@163.com
  • 电话:025-83794925
  • 国际标准刊号:ISSN:1004-1699
  • 国内统一刊号:ISSN:32-1322/TN
  • 邮发代号:28-366
  • 获奖情况:
  • 2011-2012年获中国科技论文在线优秀期刊一等奖,2012年获第四届中国高校优秀科技期刊奖,2011年获中国精品科技期刊
  • 国内外数据库收录:
  • 美国化学文摘(网络版),荷兰文摘与引文数据库,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版)
  • 被引量:18030