位置:成果数据库 > 期刊 > 期刊详情页
新型NN训练算法及其在优化设计中的应用
  • ISSN号:1002-8331
  • 期刊名称:《计算机工程与应用》
  • 时间:0
  • 分类:TP183[自动化与计算机技术—控制科学与工程;自动化与计算机技术—控制理论与控制工程] TP391.72[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]北京航空航天大学能源与动力工程学院,北京100083
  • 相关基金:国家高技术研究发展计划(863)(the National High-Tech Research and Development Plan of China under Grant No.2006AA04Z405).
中文摘要:

提出采用GA—BP贝叶斯算法来建立优化设计近似模型。该算法是一种新型神经网络训练算法,它以提高网络的泛化性能为主旨,其训练目标是获取对应于后验分布最大值的权值向量。以方形扁平封装器件为例,采用GA—BP贝叶斯算法建立了温度场分析的近似模型,基于它对封装散热结构进行了优化,并与L-M BP算法进行了对比。结果表明,基于GA—BP贝叶斯算法的温度场分析近似模型,对芯片中心温度的预测精度更为理想,并且受随机因素的影响很小。CA—BP贝叶斯算法克服了现有网络训练算法对初始权值敏感、建模精度不高的缺点,在工程优化设计中具有实用价值。

英文摘要:

The GA-BP Bayesian algorithm is used to establish the approximation model for optimization design.This algorithm is a new NN training algorithm developed by the authors.Its aim is to improve the generalization ability of neural networks,and it trains a network with the purpose of obtaining the weights corresponding with the maximum posterior probability.Taking a quad flat package for example,the GA-BP Bayesian algorithm was used to establish the temperature-field analysis approximation model.Then the optimization design of the heat-dissipating structure was carried out based on it,and the comparison with the L-M backpropagation was made.The results show that the temperature-field analysis approximation models based on GA-BP Bayesian algorithm have higher prediction accuracy for chip center temperature,and that the prediction accuracy they have can hardly be effected by random factors.The GA-BP Bayesian algorithm overcomes the shortcomings of the current algorithms,such as the high sensitiveness to initial weights and the unsatisfactory modeling accuracy,and it is valuable in engineering optimization design.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《计算机工程与应用》
  • 北大核心期刊(2014版)
  • 主管单位:中国电子科技集团公司
  • 主办单位:华北计算技术研究所
  • 主编:怀进鹏
  • 地址:北京市海淀区北四环中路211号北京619信箱26分箱
  • 邮编:100083
  • 邮箱:ceaj@vip.163.com
  • 电话:
  • 国际标准刊号:ISSN:1002-8331
  • 国内统一刊号:ISSN:11-2127/TP
  • 邮发代号:82-605
  • 获奖情况:
  • 1. 2012年首批获得中国学术文献评价中心发布的 “...,2. 2001年获得新闻出版署“中国期刊方阵双效期刊”,3. 2008年首批入选国家科技部“中国精品科技期刊...,4.2003年-2011年连续获得工业和信息化部期刊最高...
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,波兰哥白尼索引,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:97887