位置:成果数据库 > 期刊 > 期刊详情页
基于亮温和SVM模型的干球温度推算方法
  • ISSN号:1007-4619
  • 期刊名称:遥感学报
  • 时间:2015.1.1
  • 页码:172-178
  • 分类:TP79[自动化与计算机技术—控制科学与工程;自动化与计算机技术—检测技术与自动化装置]
  • 作者机构:[1]南宁市气象局,广西南宁530022, [2]宾阳县气象局,广西南宁530022, [3]成都信息工程学院,四川成都610225
  • 相关基金:国家自然科学基金(编号:51209024,41365002,41101314); 广西自然基金(编号:2011GXNSFE018006); 广西科技攻关项目(编号:1355010-4); 四川省科技厅项目(编号:2013ZR0080)
  • 相关项目:区域气候变化对水资源安全影响的定量分析研究
中文摘要:

干球温度(气温)是地面气象观测中所要测定的常规要素之一。目前基于遥感数据获取该量的方法多采用线性拟合或直接应用遥感反演的温度近似代替干球温度,但是由于下垫面复杂,导致误差较大。本文提出用支持向量机(SVM)模型进行干球温度推算。选择广西省南宁市为研究区域,首先通过遥感反演温度与气象实测温度的对比,证明了利用遥感数据推算干球温度的可能性。然后,构建了针对干球温度的SVM推算模型。最后,尝试了分别使用表观亮温和遥感反演地温作为SVM模型的输入进行干球温度的推算。结果表明,SVM模型推算的干球温度与实测值更为接近,和传统方法相比,精度得到明显提高;且用表观亮温进行推算更为简单,更适合业务化的应用。

英文摘要:

Dry-bulb temperature, which can represent the regional characteristics of thermal conditions, is one of the conventional meteorological elements measured over surfaces. Such measurement serves an important function in studying plant physiology, hydrology, the atmosphere, and the environment. Dry-bulb temperatures are usually calculated through linear fitting to original remote sensing data or approximate temperatures retrieved from remote sensing data. These methods are suitable for homogeneous areas with a stable atmospheric stratification and circulation pattern. However, a linear relation does not exist between surface temperature retrieved from remote sensing data and the actual dry temperature because of the limitations of algorithms and the complexity of the underlying surface. Dry-bulb temperatures cannot be calculated accurately with the use of traditional retrieval algorithms. Therefore, a support vector machine (SVM) model was proposed in this study to calculate dry-bulb temperatures. Nanning City was selected as the research area. First, the temperature retrieved from remote sensing data was compared with in situ data. The relations among brightness temperature, temperature retrieved from remote sensing data, and actual dry-bulb temperature were confirmed. Calculating dry-bulb temperature by remote sensing data was a reasonable approach. Second, the actual dry-bulb temperature in some stations and the corresponding temperatures retrieved from remote sensing data ( at the same time and geographical location) were taken as modeling samples. The SVM prediction model with a strong learning capability and nonlinear processing capability was developed to retrieve dry-bulb temperatures. Finally, the dry-bulb temperature was calculated by using remote sensing brightness temperature and the temperature retrieved from remote sensing data as the input parameters of the SVM model. For the data obtained on May 12 and November 20, 2008, the absolute errors of the traditional method (using T, linear tra

同期刊论文项目
期刊论文 50 会议论文 2 获奖 1 著作 1
同项目期刊论文
期刊信息
  • 《遥感学报》
  • 北大核心期刊(2011版)
  • 主管单位:中国科学院
  • 主办单位:中国地理学会环境遥感分会 中国科学院遥感应用研究所
  • 主编:顾行发
  • 地址:北京市安外大屯路中国科学院遥感与地球研究所
  • 邮编:100101
  • 邮箱:jrs@irsa.ac.cn
  • 电话:010-64806643
  • 国际标准刊号:ISSN:1007-4619
  • 国内统一刊号:ISSN:11-3841/TP
  • 邮发代号:82-324
  • 获奖情况:
  • 中国期刊方阵“双效”期刊
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,波兰哥白尼索引,荷兰文摘与引文数据库,美国工程索引,美国剑桥科学文摘,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:16827