位置:成果数据库 > 期刊 > 期刊详情页
Invariant algebraic surfaces of some dynamical system
  • ISSN号:1002-0942
  • 期刊名称:Annals of Differential Equations
  • 时间:2013.2.20
  • 页码:56-67
  • 分类:O187.1[理学—数学;理学—基础数学]
  • 作者机构:[1]Dept.
  • 相关基金:supported by the NNSF of China (11171191 and 11201266)
  • 相关项目:随机微分方程概周期解和遍历解
作者: 吕廷华|
中文摘要:

In this paper, we study the invariant algebraic surfaces of a system, which generalizes the Lorenz system. Using the weight homogeneous polynomials and the method of characteristic curves for solving linear partial differential equations, we characterize all the Darboux invariants, the irreducible Darboux polynomials, the rational first integrals and the algebraic integrability of this system.

英文摘要:

In this paper, we study the invariant algebraic surfaces of a system, which generalizes the Lorenz system. Using the weight homogeneous polynomials and the method of characteristic curves for solving linear partial differential equations, we characterize all the Darboux invariants, the irreducible Darboux polynomials, the rational first integrals and the algebraic integrability of this system.

同期刊论文项目
同项目期刊论文