位置:成果数据库 > 期刊 > 期刊详情页
基于MICA-PCA的间歇过程故障监测
  • ISSN号:0254-0037
  • 期刊名称:北京工业大学学报
  • 时间:2014
  • 页码:1637-1642
  • 分类:TQ920.5[轻工技术与工程—发酵工程]
  • 作者机构:[1]北京工业大学电子信息与控制工程学院, [2]内蒙古工业大学电力学院
  • 相关基金:国家自然科学基金资助项目(61174109);高等学校博士学科点专项科研基金(20101103110009)
  • 相关项目:基于多元统计方法的间歇过程监控与故障诊断研究
中文摘要:

针对具有数据非高斯分布或混合分布的间歇过程,研究一种新的改进MICA-PCA监控方法.首先利用MICA方法提取非高斯分布过程信息,通过设定负熵阈值实现独立成分个数的自动选择,以此克服传统ICA方法中需提前确定独立成分个数的缺点,再使用核密度估计方法确定相应统计量的置信限,然后对服从多元高斯分布的残差过程信息,进一步进行PCA分析和处理.将该方法应用于北京某生化制药厂重组大肠杆菌制备白介素-2发酵过程监控.结果表明:该法在过程变量不服从高斯分布的情况下能有效降低传统方法的漏报和误报率,准确地对过程进行监控.

英文摘要:

Aiming at the batch process that has the non-Gaussian distribution or mixed distribution, a new monitoring method based on modified MICA-PCA is researched. Process information of non-Gaussian is first extracted using the MICA method. Setting threshold value of negative entropy is used to automatically select the independent components, which can overcome the shortcoming of predefining the number of independent components in traditional method of ICA. The confidence limits of the corresponding monitoring statistics are determined using kernel density estimation; then the process residual information, which is multivariate Gaussian distribution, is further analyzed and processed using PCA. The method is applied to the fermentation process monitoring of obtaining interleukin by recombinant Escherichia coli, in a biochemical pharmaceutical factory in Beijing. Results show that when process variables are not Gaussian distribution, the method can accurately monitor the process and effectively reduce the alarm failure and false alarm of traditional method.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《北京工业大学学报》
  • 中国科技核心期刊
  • 主管单位:北京市教委
  • 主办单位:北京工业大学
  • 主编:卢振洋
  • 地址:北京市朝阳区平乐园100号
  • 邮编:100124
  • 邮箱:xuebao@bjut.edu.cn
  • 电话:010-67392535
  • 国际标准刊号:ISSN:0254-0037
  • 国内统一刊号:ISSN:11-2286/T
  • 邮发代号:2-86
  • 获奖情况:
  • 中国高等学校自然科学学报优秀学报二等奖,北京市优秀期刊,华北5省市优秀期刊,中国期刊方阵“双效”期刊
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,美国化学文摘(网络版),美国数学评论(网络版),德国数学文摘,荷兰文摘与引文数据库,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:11924