位置:成果数据库 > 期刊 > 期刊详情页
基于MICA-OCSVM的间歇过程故障监测
  • ISSN号:0254-0037
  • 期刊名称:北京工业大学学报
  • 时间:2014
  • 页码:1472-1477
  • 分类:TP274.5[自动化与计算机技术—控制科学与工程;自动化与计算机技术—检测技术与自动化装置]
  • 作者机构:[1]北京工业大学电子信息与控制工程学院,北京100124, [2]内蒙古工业大学电力学院,呼和浩特010051
  • 相关基金:国家自然科学基金资助项目(61174109,61364009);高等学校博士学科点专项科研基金资助项目(20101103110009)
  • 相关项目:基于多元统计方法的间歇过程监控与故障诊断研究
中文摘要:

针对多向独立成分分析(multi-way independent component analysis,MICA)需要假设过程变量服从非高斯分布的要求,以及MICA基于马氏距离构造的监控统计量会导致故障检测率降低的问题,研究了一种将多向独立成分分析与单类支持向量机(one-class support vector machines,OCSVM)相结合的MICA-OCSVM监测方法.首先采用MICA提取间歇过程所有批次的独立成分;然后分别对每个时刻的所有批次的独立成分进行OCSVM建模,利用确定的决策超平面构造非线性的监控统计量;最后计算所有建模数据的监控统计量,并利用核密度估计确定相应的控制限.将该方法应用到青霉素发酵过程仿真平台,实验结果表明:该方法相比于传统的MICA故障监测方法,无需考虑过程变量服从何种分布,能够有效利用独立成分的结构信息,故障的误报率、漏报率明显降低.

英文摘要:

To solve the problems that multi-way independent component analysis (MICA) need to assume process variables conforming non-Gaussian distribution and the monitoring statistics based on the Mahalanobis distance of MICA will cause reduction in fault detection rate, a new monitoring method based on Multi-way Independent Component Analysis and One-Class Support Vector Machines (MICA- 0CSVM) was researched. Firstly, the independent components (ICs) from all batches of batch process were extracted by MICA. Secondly, OCSVM was used to model for all batches' ICs at each time, separately. Meanwhile, decision hyper-plane of the OCSVM model was chosen to construct monitoring statistics. Finally, the confidence limits were determined using kernel density estimation by the monitoring statistics calculated from all modeling data. The method was applied to fed-batch penicillin fermentation process. The experiment results show that in contrast to the fault detection methods based on traditional MICA, the proposed method can make full use of ICs' structure information regardless of the distribution of process variables and can reduce the rate of misinformation and omission effectively.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《北京工业大学学报》
  • 中国科技核心期刊
  • 主管单位:北京市教委
  • 主办单位:北京工业大学
  • 主编:卢振洋
  • 地址:北京市朝阳区平乐园100号
  • 邮编:100124
  • 邮箱:xuebao@bjut.edu.cn
  • 电话:010-67392535
  • 国际标准刊号:ISSN:0254-0037
  • 国内统一刊号:ISSN:11-2286/T
  • 邮发代号:2-86
  • 获奖情况:
  • 中国高等学校自然科学学报优秀学报二等奖,北京市优秀期刊,华北5省市优秀期刊,中国期刊方阵“双效”期刊
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,美国化学文摘(网络版),美国数学评论(网络版),德国数学文摘,荷兰文摘与引文数据库,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:11924