位置:成果数据库 > 期刊 > 期刊详情页
基于Eros距离的纵向数据模糊聚类方法
  • ISSN号:0254-0037
  • 期刊名称:《北京工业大学学报》
  • 时间:0
  • 分类:TP391[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]北京工业大学电子信息与控制工程学院,北京100124
  • 相关基金:国家自然科学基金资助项目(61174109);北京新世纪百千万人才工程(2010年度).
中文摘要:

针对纵向数据集的数据特征,如多维、含缺失值、序列不等间隔和不全等长等特点,研究一种基于Eros距离的纵向数据的相似性度量方法,并对模糊C均值聚类算法进行改进,提出一种基于Eros距离度量的模糊聚类数据处理方法.对于纵向数据集,首先进行缺失值填充、变量标准化等预处理,使用粗糙集理论对冗余属性进行约简,然后基于FErosCM聚类方法进行数据自动分类.对比实验证实此方法可用于纵向数据集的自动聚类处理,并使用信息熵作为聚类效果的评价手段。实验结果表明:无论在聚类效率还是准确度上,FErosCM方法对于纵向数据的分类处理均是有效可行的.

英文摘要:

Considering the characteristics of longitudinal data set, such as muhi-variates, missing data, unequal series length, and irregular time interval, an algorithm based on Eros distance similarity measure for longitudinal data is proposed. Eros distance is used in Fuzzy-C-Means cluster processing. First, preprocessing is done for unbalance longitudinal data set, which includes filling the missing data, reducing the randaut attributes, etc. Second, FErosCM Cluster method is used for claasification automatically, and takes into account information entropy for assessing the performance of cluster algorithm. Experiments show that this method is effective and efficient for longitudinal data classification.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《北京工业大学学报》
  • 中国科技核心期刊
  • 主管单位:北京市教委
  • 主办单位:北京工业大学
  • 主编:卢振洋
  • 地址:北京市朝阳区平乐园100号
  • 邮编:100124
  • 邮箱:xuebao@bjut.edu.cn
  • 电话:010-67392535
  • 国际标准刊号:ISSN:0254-0037
  • 国内统一刊号:ISSN:11-2286/T
  • 邮发代号:2-86
  • 获奖情况:
  • 中国高等学校自然科学学报优秀学报二等奖,北京市优秀期刊,华北5省市优秀期刊,中国期刊方阵“双效”期刊
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,美国化学文摘(网络版),美国数学评论(网络版),德国数学文摘,荷兰文摘与引文数据库,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:11924