位置:成果数据库 > 期刊 > 期刊详情页
改进的多端元高光谱解混算法
  • ISSN号:1006-7043
  • 期刊名称:《哈尔滨工程大学学报》
  • 时间:0
  • 分类:TP751.1[自动化与计算机技术—控制科学与工程;自动化与计算机技术—检测技术与自动化装置]
  • 作者机构:[1]哈尔滨工程大学信息与通信工程学院,黑龙江哈尔滨150001
  • 相关基金:国家自然科学基金资助项目(61571145,61405041); 中国博士后科学基金资助项目(2014M551221); 黑龙江省自然科学基金重点资助项目(ZD201216); 哈尔滨市优秀学科带头人基金资助项目(RC2013XK009003)
中文摘要:

针对经典多端元光谱混合模型(MESMA)存在着计算量大,端元预选繁琐以及过拟合等缺点,提出了一种改进的多端元解混算法。该算法根据正交子空间投影具有分离感兴趣信号与不感兴趣信号的特点,将像元投影到全部地物端元(每类地物选择一条类内光谱)构成的正交子空间上,按照投影值确定构成混合像元每类地物的类内光谱,在下一步迭代求解的过程中,分离出已确定地物类内光谱的像元,降低计算量,然后根据重构误差变化量确定最优端元个数,避免过拟合。实验结果表明,改进的算法反演丰度误差和解混时间都比原有算法降低很多。

英文摘要:

The classical multi-endmember spectral mixture analysis model has shortcomings in computation intensity,cumbersome endmember preselection and over-fitting. To overcome these shortcomings,an improved multi-endmember unmixing algorithm is proposed here. Using the characteristics of orthogonal subspace projection that can distinguish signals of interest,it projects pixels onto the orthogonal subspace composed of all of endmembers of the entire surface feature class. Each class selects only one intra-class spectrum. Then it determines the intra-class spectrum of every feature class to which pixels belong according to their projection values. These pixels are isolated in the next iteration in order to reduce computation. Then the optimal number of endmember combinations can be determined according to the reconstruction error variation,which avoids over-fitting. Experiment results show that the inversion abundance error and unmixing time of the improved algorithm are reduced compared to the original algorithm.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《哈尔滨工程大学学报》
  • 中国科技核心期刊
  • 主管单位:中华人民共和国工业和信息化部
  • 主办单位:哈尔滨工程大学
  • 主编:杨士莪
  • 地址:哈尔滨市南岗区南通大街145号1号楼
  • 邮编:150001
  • 邮箱:xuebao@hrbeu.edu.cn
  • 电话:0451-82519357
  • 国际标准刊号:ISSN:1006-7043
  • 国内统一刊号:ISSN:23-1390/U
  • 邮发代号:14-111
  • 获奖情况:
  • 工信部科技期刊评比"优秀期刊奖",中国高校科技期刊评比"精品期刊奖","北方十佳期刊奖",首届黑龙江省政府出版奖--优秀期刊奖
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,美国化学文摘(网络版),美国数学评论(网络版),波兰哥白尼索引,德国数学文摘,荷兰文摘与引文数据库,美国工程索引,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版)
  • 被引量:11823