提出了一种基于LKRX检测器的实时异常检测算法.利用局部因果滑动阵列窗,使检测系统保持因果性:根据卡尔曼滤波器的递归思想,利用Hermitian矩阵分块求逆引理和Woodbury引理,将LKRX算法中核协方差矩阵以及其逆矩阵以递归方式更新,避免了数据的重复计算和逆矩阵的求解,大大降低了算法复杂度.通过真实数据进行实验,结果表明,与LKRX算法相比,实时LKRX算法在保持相同检测精度的同时,消耗更少的计算时间;而与实时RX算法相比,实时LKRX算法能够检测到更多的异常目标.
LKRX detector-based hyperspectral real-time anomaly detection algorithm was proposed. U- sing local causal sliding array window, the causality of detection system is remained. According to Kalman filter, by using Hermitian lemma and Woodbury' s identity, the kernel covariance matrix and its inverse in KRX algorithm are updated recursively. This thereby leads to low computational complexity. Experimental results demonstrated that real-time KRX detector consumes less time in comparison with KRX detector by keeping the same detection performance, which detects more anomalies.