针对实际工业常见的定点跟踪控制问题,通过数学变换,将原系统最优跟踪控制问题转化为新系统最优调节问题,以跟踪误差作为新系统的状态量,引入ε-自适应动态规划算法(ε-ADP)求解HJB方程,并以两个BP神经网络分别用于近似性能指标函数和最优控制,从而得到ε-最优跟踪控制。仿真实验表明,所设计的控制器可以在有限时间内将状态跟踪到目标值,并使得性能指标函数近似最优。
In order to deal with the common fix-point tracking control problems in actual industrial systems, a mathematical transformation is developed to change the original system optimal tracking control problem to an optimal regulator problem of a new system. The state variables of the new sys-tem are the tracking error. ε-adaptive dynamic programming (ε-ADP) is used to solve HJB equation while two BP neural networks are used to approximate the performance index function and optimal control. Thus ε-optimal tracking control is obtained. Simulation results show that the controller de-signed can track a state to the target and make the performance index function converges to optimal.