设M为S^n+1(1)中紧致极小超面Mn1, n2=S^n1(√n1/n)×S^n2(√n2/n)属于S^n+1(1)为S^n1(1)中的Clifford极小超曲面如果Spec^p(M)=spec^p(Mn1,n2), Spec^1(M)=spec^1(Mn1,n2),其中0≤p〈q≤n,p+q≠2, 2(n-2)(n-3)+9(n-1)+9(p^2+1^2-np-nq)≠0,则M与Mn1,n2等距。
Let M be a compact minimal hypersurface of sphere S^n+1(1) and Mn1, n2=S^n1(√n1/n)×S^n2(√n2/n) belong to S^n+1(1) be a Clifford minima hypersurface. If Spec^p (M)=spec^p(Mn1,n2) and Spec^q (M)=spec^q(Mn1,n2), 0≤p〈q≤n,p+q≠2, 2(n-2)(n-3)+9(n-1)+9(p^2+1^2-np-nq)≠0, then M isometric to Mn1,n2.