在这份报纸,我们证明那是与 nonnegative kth-Ricci 弯曲歧管的完全的 n 维的 Riemannian,大体积生长有有限拓扑的类型如果 limr {( 体积[B (p, r )]/nrn-M ) rk (n-1 ) k+1 (1-/2 )} 为某常数 0。我们也证明那是与 nonnegative kth-Ricci 弯曲并且在一些拧的条件下面歧管的完全的 Riemannian 是到 Rn 的 diffeomorphic。
in this paper,we prove that a complete n-dimensional Riemannian manifold with nonnegative kth-Ricci curvature, large volume growth has finite topological type provided that lim r→∞{(vol[B(p.r]/ωnrn-αM)rk(n-1)/k+1(1-α/2)}≤for some COllstant ε〉0 We also prove that a conlplete Riemannian manifold with nonnegative kth-Ricci curvature and undler some pinching conditions is diffeomorphic to R^n.