本文证明了每个充分大的奇数N可以表为九个几乎相等的素数的立方之和,即N=p1^3+…+p9^3,这里|Pj-3√N/9≤U=N1/3-2/555+ε,从而进一步深化了华罗庚教授的经典.我们利用Dirichlet多项式的混合型估计及一个新的迭代方法建立了这一结果.
In this paper we enrich Hua's result by proving that each sufficiently large odd integer N can be written as N=p1^3+…+p9^3,这里|Pj-3√N/9≤U=N1/3-2/555+ε where pj are primes. This result is obtained by an iterative method and a hybrid estimate for Dirichlet polynomial.