位置:成果数据库 > 期刊 > 期刊详情页
General H-matrices and their Schur complements
  • ISSN号:1673-3452
  • 期刊名称:Frontiers of Mathematics in China
  • 时间:2014.5.19
  • 页码:1141-1168
  • 分类:O151.21[理学—数学;理学—基础数学] X591[环境科学与工程—环境工程]
  • 作者机构:[1]Institute of Information and system Science and School of Mathematics and Statistics, Xi'an Jiaotong University, Xi'an 710049, China, [2]School of Science, Xi'an Polytechnic University, Xi'an 710048, China
  • 相关基金:Acknowledgements This work was supported in part by the Science Foundation of the Education Department of Shaanxi Province of China (No. 2013JK0593), the Scientific Research Foundation of Xi'an Polytechnic University (No. BS1014), the China Postdoctoral Science Foundation (No. 20110491668), and the National Natural Science Foundations of China (Grant Nos. 11201362, 11271297, 11101325, 11171270).
  • 相关项目:对称张量特征值问题的高性能算法、理论及应用
中文摘要:

光线模式矩阵和光线矩阵的定义第一被建议在一般 H 矩阵的 nonsingularity/singularity 和集中上建立一些新结果。然后矩阵 A 上的一些条件 < 啜 class= “ a-plus-plus ” > n

英文摘要:

The definitions of θ-ray pattern proposed to establish some new results matrix and θ-ray matrix are firstly on nonsingularity/singularity and convergence of general H-matrices. Then some conditions on the matrix A ∈ C^n×n and nonempty α (n) = {1,2,... ,n} are proposed such that A is an invertible H-matrix if A(α) and A/α are both invertible H-matrices. Furthermore, the important results on Schur complement for general H-matrices are presented to give the different necessary and sufficient conditions for the matrix A E HM and the subset α C (n) such that the Schur complement matrix A/α∈ HI^n-|α| or A/α ∈ Hn-|α|^M or A/α ∈ H^n-| α|^S.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《中国数学前沿:英文版》
  • 主管单位:中华人民共和国教育部
  • 主办单位:高等教育出版社
  • 主编:张恭庆
  • 地址:北京市朝阳区惠新东街4号富盛大厦15层
  • 邮编:100029
  • 邮箱:
  • 电话:010-58556485
  • 国际标准刊号:ISSN:1673-3452
  • 国内统一刊号:ISSN:11-5739/O1
  • 邮发代号:80-964
  • 获奖情况:
  • 国内外数据库收录:
  • 美国数学评论(网络版),德国数学文摘,荷兰文摘与引文数据库,美国剑桥科学文摘,美国科学引文索引(扩展库)
  • 被引量:10