末敏子弹在火药燃气推力作用下从母弹舱内抛出后,其表面红外辐射主要源于减速减旋运动产生的气动加热。针对此问题,应用SIMULINK建立了末敏子弹减速减旋弹道的仿真模型,求解并分析了弹道诸元的变化规律。以部分弹道数据和气流参数为来流条件,利用FLUENT对其气动热进行了数值模拟,分析了不同飞行条件下的表面瞬态温度、压力分布规律。结果表明:末敏子弹在减速减旋段的速度较低,表面温度梯度较小,红外辐射特征较弱;高温区集中在弹头附近、伞盘以及连接杆部位;驻点温度的仿真结果与工程计算结果吻合较好。研究结论可为末敏弹的红外侦察预警仿真技术提供帮助。
The surface infrared radiation(IR)of terminal-sensitive submunition(TSS)mainly comes from the aerodynamic heating after it is projected out of the carrier capsule under the gas thrust generated by gunpowder.Aiming at this problem,SIMULINK was used to build the trajectory simulation-model of TSS at deceleration and despinning stage,and the change laws of the ballistic data were solved and analyzed.Taking some specific ballistic data and airflow parameters as the inlet flow condition,FLUENT was used to simulate the aerodynamic heating and analyze the dis-tribution of the surface transient temperature and pressure.The results show that at the deceleration and despinning stage,the velocity of TSS is relatively lower,and the surface temperature gradient and IR characteristics are not obvious.The high temperature area is concentrated on the warhead,the umbrella plate and the connecting rod.The stagnation temperature obtained by numerical simulation reasonably agrees with the engineering calculation result.The results are useful to the infrared warning reconnaissance technology of terminal-sensitive projectile.