位置:成果数据库 > 期刊 > 期刊详情页
云平台下输变电设备状态监测大数据存储优化与并行处理
  • ISSN号:0258-8013
  • 期刊名称:《中国电机工程学报》
  • 时间:0
  • 分类:TM764[电气工程—电力系统及自动化]
  • 作者机构:[1]华北电力大学控制与计算机工程学院,河北省保定市071003
  • 相关基金:国家自然科学基金项目(61074078); 中央高校基本科研业务费专项资金资助项目(13MS88,13XS30); 河北省自然科学基金项目(F2014502069)
中文摘要:

结合大数据技术提升输变电设备状态评价的广度和深度,并解决实际应用问题成为目前电力行业新的挑战。针对输变电设备状态监测大数据可靠存储和快速访问两方面大数据处理核心问题,基于开源的Hadoop云计算实验平台进行了数据分布策略、数据块尺寸调优、集群网络拓扑规划三方面的存储优化研究和大数据并行分析的研究。提出计及数据相关性的多副本一致哈希数据存储算法,能将具有相关性的数据在集群中聚集,提升数据处理执行效率。基于数据相关性多副本一致哈希数据分布,应用Map Reduce并行编程模型设计实现了多数据源并行连接查询算法和多通道数据融合并行特征提取算法。将两种算法在实验室搭建的集群上测试运行,结果表明,多数据源并行连接查询的执行时间仅为标准Hadoop方案的32%,多通道数据融合并行特征提取算法执行时间仅为标准Hadoop方案的35%。

英文摘要:

Applying big data technology for improving the condition evaluation of power transmission and transforming equipment and solving its practical problems becomes a new challenge in power industry. For high reliable storage and rapid access of data, the data distribution strategy, data block size adjustment and the cluster network topology are studied based on hadoop. A multi-copy consistency Hash algorithm based on data correlation(CMCH) is proposed. The algorithm makes the relevant data gathering in the cluster and improves the data processing speed. Based on the CMCH algorithm and Map Reduce model, a multiple data sources map join query algorithm and multi-channel data fusion feature extraction algorithm are designed. The two algorithms are executed on our built clusters and the results show that the CMCH improves the efficiency of multiple data sources join query and multi-channel data fusion feature extraction, and the execution time is just 32% and 35% respectively comparing with standard Hadoop.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《中国电机工程学报》
  • 北大核心期刊(2011版)
  • 主管单位:中国科学技术协会
  • 主办单位:中国电机工程学会
  • 主编:张文涛
  • 地址:北京清河小营东路15号 中国电力科学研究院内
  • 邮编:100192
  • 邮箱:pcsee@epri.sgcc.com.cn
  • 电话:010-82812536 82812534 82812545
  • 国际标准刊号:ISSN:0258-8013
  • 国内统一刊号:ISSN:11-2107/TM
  • 邮发代号:82-327
  • 获奖情况:
  • 1992年全国优秀科技期刊三等奖,1992年中国科协优秀科技期刊二等奖,1996年中国科协优秀科技期刊二等奖,中国期刊方阵“双效”期刊
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,波兰哥白尼索引,德国数学文摘,荷兰文摘与引文数据库,美国工程索引,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:98970