C^*-代数Mn(A)上矩阵迹是一个正线性映射τ:Mn(A)→A且满足τ(u*au)=τ(a)((A)a∈Mn(A),(A)u∈U(Mn(A)))及τ(a^2)≤(τ(a))^2((A)a≥0).论文讨论这种矩阵迹的一些性质,给出了若干不等式性质,并且证明:对Mn(A)中的Hermitian元a,b,当m-2k(k∈N)时,τ((ab)m)≤τ(ambm)成立.同时还证明了当m=2^k(k∈N)时,对Mn(A)中任一元a,不等式τ(am(a*)m)≤τ((aa*)m)成立.
This paper studies the properties of a matrix-trace on C^* algebra Mn(A) which is a positive linear mapping τ:Mn(A)→A such that τ(u*au)=τ(a)((A)a∈Mn(A),(A)u∈U(Mn(A)))and τ(a^2)≤(τ(a))^2((A)a≥0). and obtains some inequalities. Especially, it is proved that for Hermitian elements a,b in Mn(A) and m=2^k(k∈N),the inequality τ((ab)m)≤τ(a^mb^m) holds. Also,for every element a in Mn(A) and m=2^k(k∈N) ,r(a^m(a^* )^m)≤r( (aa^* )^m).