假设A(z)在单位圆内解析,研究方程 f″+A(z)f=0(*) 非平凡解的零点序列{αn},它们具有Bergman空间零点序列的特征,也即满足∑n(1-|αn|^2)1+δ〈∞对每一个δ〉0.首先寻找A(z)的条件使得方程(*)的解属于Bergman空间A^2,这时这些解的零点序列显然具有上述特征.其次对于任给的零点序列{αn},不是Blaschke序列,假设是一个A^-α插值序列(同样满足∑n(1-|αn|^2)^1+δ〈∞对每一个δ〉0),我们将构造一个解析函数A(z),使得{αn}是方程(*)的某个解的零点序列,并且估计A(z)的增长.
Let A(z) be analytic in the unit disc, we study the zero sequences {αn} of the non-trivial solutions of f″+A(z)f=0(*) having the properties of zero sequences for the Bergman spaces, that is, satisfying ∑n(1-|αn|^2)1+δ〈∞ for every δ 〉 0. We first find conditions on A(z) such that the solutions of (*) belong to the Bergman space A^2, and so the zero sequences obviously have the above characterizations. For any given zero sequence {αn}, not the Blaschke sequence, assuming to be an interpolation sequence for A^-α (which also satisfying ∑n(1-|αn|^2)1+δ〈∞ for any 5 〉 0), we will construct an analytic function A(z) such that {αn} is the zero sequence of a solution of (*), and estimate the growth of A(z).