在这份报纸,我们为 f (x)考虑生长和盖住的定理,在 f (x)是类型印射,顺序在统一复杂 Banach 空间的球 B 上定义的 spiallike 的地方,并且 x=0 也是为 f (x) -x.We 的零目 k+1 当时,评价是精确的 dicate =0 并且仍然给生长上面的界限和失真为辅助 mapping.This 结果的上面的界限包括知道的一些结果。
In this paper, we consider growth and covering theorem for f(x), where f(x) is spiallike mapping of type β with order α defined on unit ball B of complex Banach space, and x=0 is zero of order k+1 for f(x)-x. We also dicate that the estimation is precise when β=0 and still give growth upper bound and distortion upper bound for subordinate mapping. This result include some results known.