在一般模糊测度空间的任一子集上,对给定的μ-可积模糊值函数,建立所谓的广义模糊值Choquet积分,并将这种积分整体看成可测度空间上取值于模糊数(值)的集函数,进而讨论当模糊测度满足上(下)自连续性时,这种积分所对应的模糊值集函数将分别具有双零渐近、伪双零渐近可加性.
On an arbitrary subset in a general fuzzy measure space, we establish the generalized fuzzy valued Choque integral for a given integrable fuzzy valued function. Begarding in global the integral of this kind as a set function taken fuzzy numbers on the measurable spaces. And then, we obtain that this kind of fuzzy valued set functions have double-null asymptotic additivity, pseudo-double-null asymptotic aclditivity when the fuzzy measures satisfy autoeontinuity from above(below).