位置:成果数据库 > 期刊 > 期刊详情页
一种基于深度图像的自遮挡检测方法
  • ISSN号:1000-1220
  • 期刊名称:《小型微型计算机系统》
  • 时间:0
  • 分类:TP391[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]燕山大学信息科学与工程学院,河北秦皇岛066004
  • 相关基金:国家"八六三"高技术研究发展计划项目(2006AA04Z212)资助; 河北省自然科学基金项目(F2007000423)资助; 河北省教育厅基金项目(2007491)资助; 燕山大学博士基金项目(B170)资助
中文摘要:

针对视觉目标存在的自遮挡现象,并为更好地界定、规避自遮挡现象提供依据,提出一种完全基于目标深度图像信息、仅需通过分析深度图像平均曲率变化特征并结合使用二次阈值法进行自遮挡检测的方法.为避免平均曲率计算的复杂性,该方法首先采用改进的离散正交多项式局部曲面拟合法计算深度图像的平均曲率;然后,通过分析图像各点的平均曲率并结合曲率阈值提取与其八邻域点存在曲率异号的点组成自遮挡候选点集;最后,依据候选点与以其为中心的窗口内其它点存在深度值不连续的现象,再次使用阈值法,实现对自遮挡的检测.实验结果表明该方法能够有效地检测出自遮挡现象并获得自遮挡边界.

英文摘要:

Considering the self-occlusion phenomenon of visual object and in order to provide better basis for defining and avoiding this phenomenon,an approach based on depth image for detecting self-occlusion is proposed,which only by analyzing the change feature of mean curvature value in depth image and combining with two thresholds judgment. To avoid the calculation complexity of mean curvature value,the improved discrete orthogonal polynomials local surface fitting method is adopted. Then by analyzing the mean curvature value of each image points and combining with curvature threshold,the self-occlusion candidate point set is extracted,in which each point has different curvature sign with its eight neighborhood points. Finally,according to fact that the depth is discontinuous between the candidate point and other points in the window in which the candidate point is its center,the self-occlusion is detected by using threshold method again. Experimental results showed that the proposed approach can detect the self-occlusion phenomenon and obtain occlusion boundary effectively.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《小型微型计算机系统》
  • 中国科技核心期刊
  • 主管单位:中国科学院
  • 主办单位:中国科学院沈阳计算技术研究所
  • 主编:林浒
  • 地址:沈阳市浑南新区南屏东路16号
  • 邮编:110168
  • 邮箱:xwjxt@sict.ac.cn
  • 电话:024-24696120 024-24696190-8870
  • 国际标准刊号:ISSN:1000-1220
  • 国内统一刊号:ISSN:21-1106/TP
  • 邮发代号:8-108
  • 获奖情况:
  • 中国自然科学核心期刊,中国科学引文数据库来源期刊
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,波兰哥白尼索引,荷兰文摘与引文数据库,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:23212