位置:成果数据库 > 期刊 > 期刊详情页
转换参数非线性递减的正弦余弦算法
  • ISSN号:1002-8331
  • 期刊名称:《计算机工程与应用》
  • 时间:0
  • 分类:TP301.6[自动化与计算机技术—计算机系统结构;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]上海理工大学管理学院,上海200093
  • 相关基金:国家自然科学基金(No.71401106);教育部人文社会科学研究规划基金(No.16YJA630037);上海市高原学科建设项目;上海高校青年教师培养资助计划项目(No.ZZsl15018);上海理工大学国家级培育青年基金(No.16HJPY-QN15);上海理工大学博士科研启动经费项目(No.1D-15-303-005).
中文摘要:

正弦余弦算法是一种新型智能优化算法,利用正弦函数和余弦函数值的变化来实现优化搜索。转换参数直接影响算法全局探索和局部开发的平衡,对算法的性能有着重要影响。为提高该算法的优化性能,首先对转换参数的设置进行分析,然后设计出转换参数抛物线函数递减和指数函数递减两种正弦余弦算法,并采用标准测试函数进行数值实验,和转换参数线性递减的基本正弦余弦算法进行比较。结果表明指数函数递减的正弦余弦算法具有更高的计算精度和更快的收敛速度。最后以协同过滤推荐算法中相似度函数的计算为应用对象,进一步验证新算法的可行性和有效性。

英文摘要:

Sine Cosine Algorithm(SCA)is a novel intelligent optimization algorithm. SCA finds the best solution by the changes in the values of sine and cosine functions. The conversion parameter can balance the global exploration and local exploitation abilities of SCA. It has an important influence on the algorithm. To improve the optimization performance of SCA, the setting of conversion parameter is analyzed firstly and then SCA with parabolic function decreasing conversion parameter and SCA with exponential function decreasing conversion parameter are proposed. The numerical experiments on benchmark functions are performed to compare the presented algorithms and conversion parameter linearly decreasing SCA. The results show that SCA with exponential function decreasing conversion parameter has higher calculation accuracy and faster convergence speed. Finally, the calculation of similarity function for collaborative filtering recommendation algorithm is used to further verify the feasibility and effectiveness of the algorithm.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《计算机工程与应用》
  • 北大核心期刊(2014版)
  • 主管单位:中国电子科技集团公司
  • 主办单位:华北计算技术研究所
  • 主编:怀进鹏
  • 地址:北京市海淀区北四环中路211号北京619信箱26分箱
  • 邮编:100083
  • 邮箱:ceaj@vip.163.com
  • 电话:
  • 国际标准刊号:ISSN:1002-8331
  • 国内统一刊号:ISSN:11-2127/TP
  • 邮发代号:82-605
  • 获奖情况:
  • 1. 2012年首批获得中国学术文献评价中心发布的 “...,2. 2001年获得新闻出版署“中国期刊方阵双效期刊”,3. 2008年首批入选国家科技部“中国精品科技期刊...,4.2003年-2011年连续获得工业和信息化部期刊最高...
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,波兰哥白尼索引,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:97887