蝙蝠算法是一种新型的智能优化算法,本文针对基本蝙蝠算法易陷入局部最优、过早处于停滞阶段等不足之处,在蝙蝠速度更新公式中引入了惯性权重,并采用权值动态递减的方式变换权重,更好地平衡了算法的全局搜索能力和局部搜索能力.通过求解一系列经典整数规划问题,并与已有算法进行比较,结果表明:改进的蝙蝠算法在一般整数规划问题的求解中具有较高的计算效率和精度,以及较强的全局搜索能力.
Bat Algorithm( BA) is a new intelligent optimization algorithm. In order to avoid the disadvantages of basic bat algorithm in low precision and high possibility of being trapped in local optimum,this paper gives an improved bat algorithm( IBA) for solving the general integer programming problems. By introducing the inertia weights to the updating formulae of bat 's velocities,and adopting the dynamic decreasing weights for transforming the weights,the new algorithm can balance the global searching ability and the local searching ability effectively. By solving series of classic integer programming problems and comparing with that of the existing algorithms,the results show that the improved bat algorithm has high computational efficiency,precision,and strong global search ability.