利用初等方法证明了对任意的正整数n,丢番图方程(20n)^x+(99n)^y=(101n)^z仅有正整数解(x,y,z)=(2,2,2)。从而得知Jesmanowicz猜想在该情形下成立。
Using the elementary methods,the author shows that the Diophantine equation (20n)^x+( 99n)^y=( 101n)^z has no solution in positive integers other than( x,y,z) =( 2,2,2). The result is still the confirmation of Jesmanowicz's conjecture.