利用初等方法研究了Euler函数方程φ(xy)=11(φ(x)+φ(y))当k=11时方程的解的情况,得到如下结果:方程φ(xy)=11(φ(x)+φ(y))的全部正整数解为(13,161),(13,201),(13,207),(13,268),(13,322),(13,402),(13,414),(21,268),(26,161),(26,201),(26,207),(36,161),(161,13),(201,13),(207,13),(268,13),(322,13),(402,13),(414,13),(268,21),(161,26),(201,26),(207,26),(161,36),(22,22),(33,44),(44,33).
In this paper,we studied the solution of the Euler function equation by using the elementary method and all positive integer solutions of the equation are obtained:(13,161),(13,201),(13,207),(13,268),(13,322),(13,402),(13,414),(21,268),(26,161),(26,201),(26,207),(36,161),(161,13),(201,13),(207,13),(268,13),(322,13),(402,13),(414,13),(268,21),(161,26),(201,26),(207,26),(161,36),(22,22),(33,44),(44,33).