设G是一个阶数大于等于4的简单连通图.代4(G)和d4(G)分别表示G的第四大无符号拉普拉斯特征值和第四大度.本文证明了K4(G)≥d4(G)一2.
Let G be a simple connected graph with order n ≥ 4. Denote by K4(G) and d4(G) the forth largest sign[ess Laplacian eigenvalue and the forth largest degree of G, respectively. This note shows that K4(G) ≥d4(G) - 2.