令p≥q是两个正整数.用Δ(G)和λp,q(G)分别记平面图G的最大度和L(p,q)-标号数.文章证明了若G为不含i-圈,4≤i≤9的平面图,则λp,q(G)≤(2q-1)Δ(G)+8p-4.这一结果推出χ(G2)≤Δ(G)+5.因此对于这样一类图部分地证实了Wegner的猜想[2].
Let p,q be two positive integers with p≥q,and Δ(G) and λp,q(G) denote the maximum degree and the L(p,q)-labeling number of a planar graph G,respectively.In this paper,we show that if G is a planar graph without i-cycles,4≤i≤9,then λp,q(G)≤(2q-1)Δ(G)+8p-4.This result implies χ(G2)≤Δ(G)+5.So Wegner's conjecture[2] is partially confirmed for such graphs.