针对目前癫痫预测多为回顾性离线研究,难以实现自动实时预测并应用于临床这一问题,进行癫痫发作实时预测的初步研究,探讨方法的可行性。提出了结合反向传播(BP)神经网络与样本熵分析进行癫痫发作实时预测的方法。首先基于临床癫痫患者发作前脑电数据计算样本熵,转化为样本熵时间序列;然后利用BP神经网络建立患者发作时间预测模型。BP神经网络模型对发作时间的预测与实际发作时间之间存在线性关系,基于样本熵值的预测结果的相关系数达到0.94以上。结合样本熵与人工神经网络算法,在脑电监测数据基础上对癫痫发作预测具有可行性,为进一步开发癫痫便携预警装置提供了基础,具有重要的潜在临床应用价值。