基于ant-miner算法,提出改进蚁群规则挖掘算法。首先,从信息素浓度增加项、信息素挥发系数两方面,改进信息素浓度更新策略;其次,在算法求解中,引入变异算子,有效加快进化过程,缩短计算时间,获得较好的分类规则。以长沙市城区2006年TM影像为试验数据,在分类试验中对算法进行了验证。结果表明,相对于ant-miner和决策树方法而言,改进蚁群规则挖掘算法能挖掘出规则数目更少、形式更简单的分类规则,同时缩短计算时间,从而能够提高分类精度和效率。
A new ant colony algorithm based on conventional ant-miner algorithm is proposed.Firstly,the conventional ant-miner algorithm is modified by using new pheromone concentration update item and pheromone evaporation coefficient.Then,the mutation operator is introduced in algorithm solve.The new ant colony algorithm accelerates effectively the evolutionary process and shorten the calculation time.In order to verify the new algorithm,the Landsat TM image of Changsha city is chosen as a case study area.The results indicate that the new algorithm obtains the simpler forms of classification rule and reduces the computation time.The remote sensing image classification using improved ant-miner algorithm is more accurate and efficient than conventional Ant-miner algorithm and decision tree.