位置:成果数据库 > 期刊 > 期刊详情页
城市尺度组分温度的ASTER数据遥感反演
  • ISSN号:1560-8999
  • 期刊名称:地球信息科学学报
  • 时间:2012.10.1
  • 页码:658-664
  • 分类:TP79[自动化与计算机技术—控制科学与工程;自动化与计算机技术—检测技术与自动化装置]
  • 作者机构:[1]中南大学地球科学与信息物理学院,中南大学空间信息技术与可持续发展研究中心,长沙410083, [2]衡阳师范学院资源环境与旅游管理系,衡阳421008
  • 相关基金:国家自然科学基金项目(41171326,40771198); 湖南省自然科学基金项目(08JJ6023,09JJ4021)资助
  • 相关项目:基于多智能体启发式算法的土地利用空间配置模拟研究- - 以长株潭城市群为例
中文摘要:

为了获取城市尺度组分温度,实现城市水热平衡的高精度反演,探索了一种多波段热红外遥感影像的城市尺度组分温度反演算法。算法选取了植被、土壤和不透水表面等3种组分,并且针对ASTER数据,利用线性混合像元分解方法获取像元平均比辐射率,以MODIS近红外数据估算大气水汽含量和大气透过率,采用牛顿迭代法获取大气平均温度,并用最小二乘原理获取地表组分温度。最后,应用长沙市区的实验影像进行了实验研究,通过纯净像元上组分温度反演结果与分裂窗算法反演结果的对比分析,以及组分温度反演结果与实测数据的对比分析,对算法的精度进行了验证,结果表明:(1)纯净像元上,组分温度反演结果与分裂窗算法反演结果具有较好的相关性,植被组分相关性最高,达0.9796,2种结果平均绝对偏差值为0.36℃;(2)组分温度反演结果与实测组分温度绝对偏差范围为0.2~1.4℃,植被组分温度与实测值偏差相对较小,不透水表面组分温度与实测值偏差相对最大。

英文摘要:

Land surface component temperature has more significant physical meaning, and it reflects the actual distribution of temperature more significantly. Meanwhile, its retrieval algorithms have no need for hypothesis that components in pixels have the same temperature. Although the multi-angle retrieval algo- rithm of component temperature has become mature gradually, its application in the studies on urban thermal environment is restricted due to the difficulty in acquiring urban-scale mum-angle mermm m~l~u uo ta. Therefore, based on the existing multi-band remote sensing data, access to appropriate urban-scale component temperature is an urgent issue to be solved in current studies on urban thermal infrared remote sensing. In this paper, a new algorithm to retrieve land surface component temperature for urban area had been proposed. It took advantage of ASTER data, and evaluated mean emissivity of pixels based on linear spectral unmixing, retrieved atmospheric water vapor content from MODIS NIR bands, and used Newton "s iterative method to obtain atmosphere average temperature. Finally, an experimental study of this algo- rithm had been conducted and the retrieval result had been validated using some measured data. The re- sults showed that. (1) the results of component temperature retrieval algorithm and split window algo- rithm of pure pixels have high correlation coefficient and the correlation coefficient of vegetation is the highest; (2) compared with the measured data, biases of the retrieval result ranged between 0.2 and 1.4℃, and the vegetation component temperature among different components had the smallest bias value.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《地球信息科学学报》
  • 中国科技核心期刊
  • 主管单位:中国科学院
  • 主办单位:中国科学院地理科学与资源研究所 中国地理学会
  • 主编:徐冠华
  • 地址:北京大屯路甲11号
  • 邮编:100101
  • 邮箱:sxfu@lreis.ac.cn
  • 电话:010-64888891
  • 国际标准刊号:ISSN:1560-8999
  • 国内统一刊号:ISSN:11-5809/P
  • 邮发代号:82-919
  • 获奖情况:
  • 国内外数据库收录:
  • 中国中国科技核心期刊,中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版)
  • 被引量:3181